§ 23.703 (2) Be designed so that the occurrence of any failure of the flap system that would result in an unsafe flight characteristic of the airplane is extremely improbable; or (b) The airplane must be shown to have safe flight characteristics with any combination of extreme positions of individual movable surfaces (mechanically interconnected surfaces are to be considered as a single surface). (c) If an interconnection is used in multiengine airplanes, it must be deaccount the signed tο for unsummetrical loads resulting from flight with the engines on one side of the plane of symmetry inoperative and the remaining engines at takeoff power. For single-engine airplanes, and multiengine airplanes with no slipstream effects on the flaps, it may be assumed that 100 percent of the critical air load acts on one side and 70 percent on the other. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–14, 38 FR 31821, Nov. 19, 1973; Amdt. 23–42, 56 FR 353, Jan. 3, 1991; 56 FR 5455, Feb. 11, 1991; Amdt. 23–49, 61 FR 5165, Feb. 9, 1996] ### §23.703 Takeoff warning system. For commuter category airplanes, unless it can be shown that a lift or longitudinal trim device that affects the takeoff performance of the aircraft would not give an unsafe takeoff configuration when selection out of an approved takeoff position, a takeoff warning system must be installed and meet the following requirements: - (a) The system must provide to the pilots an aural warning that is automatically activated during the initial portion of the takeoff role if the airplane is in a configuration that would not allow a safe takeoff. The warning must continue until— - (1) The configuration is changed to allow safe takeoff, or - (2) Action is taken by the pilot to abandon the takeoff roll. - (b) The means used to activate the system must function properly for all authorized takeoff power settings and procedures and throughout the ranges of takeoff weights, altitudes, and temperatures for which certification is requested [Doc. No. 27806, 61 FR 5166, Feb. 9, 1996] #### LANDING GEAR #### § 23.721 General. For commuter category airplanes that have a passenger seating configuration, excluding pilot seats, of 10 or more, the following general requirements for the landing gear apply: - (a) The main landing-gear system must be designed so that if it fails due to overloads during takeoff and landing (assuming the overloads to act in the upward and aft directions), the failure mode is not likely to cause the spillage of enough fuel from any part of the fuel system to consitute a fire hazard. - (b) Each airplane must be designed so that, with the airplane under control, it can be landed on a paved runway with any one or more landing-gear legs not extended without sustaining a structural component failure that is likely to cause the spillage of enough fuel to consitute a fire hazard. - (c) Compliance with the provisions of this section may be shown by analysis or tests, or both. [Amdt. 23-34, 52 FR 1830, Jan. 15, 1987] #### §23.723 Shock absorption tests. - (a) It must be shown that the limit load factors selected for design in accordance with §23.473 for takeoff and landing weights, respectively, will not be exceeded. This must be shown by energy absorption tests except that analysis based on tests conducted on a landing gear system with identical energy absorption characteristics may be used for increases in previously approved takeoff and landing weights. - (b) The landing gear may not fail, but may yield, in a test showing its reserve energy absorption capacity, simulating a descent velocity of 1.2 times the limit descent velocity, assuming wing lift equal to the weight of the airplane. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR 258, Jan. 9, 1965, as amended by Amdt. 23–23, 43 FR 50593, Oct. 30, 1978; Amdt. 23–49, 61 FR 5166, Feb. 9, 1996] ## §23.725 Limit drop tests. (a) If compliance with §23.723(a) is shown by free drop tests, these tests must be made on the complete airplane, or on units consisting of wheel, tire, and shock absorber, in their proper relation, from free drop heights not less than those determined by the following formula: $h \text{ (inches)=3.6 } (W/S)^{1/2}$ However, the free drop height may not be less than 9.2 inches and need not be more than 18.7 inches. (b) If the effect of wing lift is provided for in free drop tests, the landing gear must be dropped with an effective weight equal to $$W_e = W \frac{\left[h + (1 - L)d\right]}{(h + d)}$$ where- W_e =the effective weight to be used in the drop test (lbs.); *h*=specified free drop height (inches); d=deflection under impact of the tire (at the approved inflation pressure) plus the vertical component of the axle travel relative to the drop mass (inches); $W=W_M$ for main gear units (lbs), equal to the static weight on that unit with the airplane in the level attitude (with the nose wheel clear in the case of nose wheel type airplanes): $W=W_T$ for tail gear units (lbs.), equal to the static weight on the tail unit with the airplane in the tail-down attitude; $W=W_N$ for nose wheel units lbs.), equal to the vertical component of the static reaction that would exist at the nose wheel, assuming that the mass of the airplane acts at the center of gravity and exerts a force of 1.0 g downward and 0.33 g forward; and L= the ratio of the assumed wing lift to the airplane weight, but not more than 0.667. - (c) The limit inertia load factor must be determined in a rational or conservative manner, during the drop test, using a landing gear unit attitude, and applied drag loads, that represent the landing conditions. - (d) The value of d used in the computation of W_e in paragraph (b) of this section may not exceed the value actually obtained in the drop test. - (e) The limit inertia load factor must be determined from the drop test in paragraph (b) of this section according to the following formula: $$n = n_j \, \frac{W_e}{W} + L$$ where- n_j =the load factor developed in the drop test (that is, the acceleration (dv/dt) in gs recorded in the drop test) plus 1.0; and W_e , W, and L are the same as in the drop test computation. (f) The value of n determined in accordance with paragraph (e) may not be more than the limit inertia load factor used in the landing conditions in $\S 23.473$. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13091, Aug. 13, 1969; Amdt. 23–48, 61 FR 5148, Feb. 9, 1996] ### §23.726 Ground load dynamic tests. - (a) If compliance with the ground load requirements of §§23.479 through 23.483 is shown dynamically by drop test, one drop test must be conducted that meets §23.725 except that the drop height must be— - (1) 2.25 times the drop height prescribed in §23.725(a); or - (2) Sufficient to develop 1.5 times the limit load factor. - (b) The critical landing condition for each of the design conditions specified in §§ 23.479 through 23.483 must be used for proof of strength. [Amdt. 23-7, 34 FR 13091, Aug. 13, 1969] ## § 23.727 Reserve energy absorption drop test. (a) If compliance with the reserve energy absorption requirement in §23.723(b) is shown by free drop tests, the drop height may not be less than 1.44 times that specified in §23.725. (b) If the effect of wing lift is provided for, the units must be dropped with an effective mass equal to $W_e=Wh/(h+d)$, when the symbols and other details are the same as in §23.725. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964, as amended by Amdt. 23–7, 34 FR 13091, Aug. 13, 1969] # § 23.729 Landing gear extension and retraction system. - (a) *General*. For airplanes with retractable landing gear, the following apply: - (1) Each landing gear retracting mechanism and its supporting structure must be designed for maximum flight load factors with the gear retracted and must be designed for the combination of friction, inertia, brake